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DOPPLER PROPERTIES OF POLYPHASE CODED
PULSE COMPRESSION WAVEFORMS

I. INTRODUCTION

The Frank polyphase-coded waveform and the P1, P2, P3, and P4 polyphase pulse-compression
waveforms previously described by the authors [1-3] provide a class of frequency-derived phase-coded
waveforms that can be sampled upon reception and processed digitally. These waveforms are derivable
from the chirp and step-chirp analog waveforms and are therefore similar in certain respects. There are
some important differences, however, which include differences in sidelobe levels, implementation
techniques and doppler characteristics.

The compressed pulse of the polyphase-coded waveforms has sidelobes which decrease as the
pulse compression ratio p is increased. For p equal to 100, the peak sidelobes range from 26 to 30 dB
below the peak signal response, depending on the particular code. In contrast, the compressed chirp or
step-chirp pulse has approximately 13 dB sidelobes, independent of the pulse compression ratio, which
can mask a relatively weak nearby target. An amplitude weighting is generally applied to reduce the
sidelobes and the resulting mismatch reduces the output S/N by 1 to 2 dB.

The polyphase-coded waveforms are capable of large pulse-compression ratios, which may be
efficiently implemented using the phase shifts provided by a fast Fourier transform (FFT). Thus, the
FFT can be used directly as the pulse compressor. These waveforms can also be efficiently compressed
with another pulse-compression technique in which the FFT is used to convert to the frequency
domain, where the matched filtering and weighting are performed. This processing is followed by an
inverse FFT to restore the signal to the time domain.

This report first reviews the properties of the polyphase-coded waveforms, then it focuses on the
doppler characteristics of these waveforms. A cyclic loss of approximately 4 dB is discussed which is
characteristic of frequency-derived polyphase-coded waveforms having low sidelobes. This cyclic varia-
tion was not recognized in the prior literature dealing with Frank codes [4,51. A method of compensat-
ing for this loss is described.

The doppler characteristics of the various polyphase codes are investigated in detail. Also, the
effects of weighting on the doppler performance of the codes is presented. This weighting may be due
to an applied amplitude weighting and/or it may be caused by bandlimiting in the receiver.

PROPERTIES OF POLYPHASE-CODED WAVEFORMS

Frank Polyphase-Coded Waveforms

The Frank polyphase-coded waveform may be described and generalized by considering a
hypothetically sampled step-chirp waveform [1,2]. The Frank code was not originally described in this
manner but was given in terms of the elements of a matrix [6]. As an example, consider a four-
frequency step-chirp waveform, as shown in Fig. 1(b), where the Fj's denote frequency tones. In this
waveform, the frequency steps are equal to the reciprocal of the tone duration 4 T,, where TC denotes

Manuscript submitted August 10, 1982
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Fig. I - Step-chirp and Frank-polyphase-code relationships

the compressed pulsewidth. Assuming that this waveform has been beat to the baseband in-phase (I)
and quadrature (Q) components using a synchronous oscillator having a frequency the same as the first
tone frequency, the resultant phase-vs-time characteristic consists of four linear sections as shown on
Fig. 1(a). The corresponding baseband frequencies are the subharmonics of the frequency I/T,. If the
baseband phases of the step-chirp waveforms are sampled every T, s and held for T, s, the phase
sequence shown in Fig. 1(c) is obtained. This sequence of phases constitutes the phases of a Frank
code for N = 4, corresponding to the four baseband frequencies of the hypothetical step-chirp
waveform. The actual transmitted Frank-coded waveform consists of a carrier whose phase is modu-
lated according to the indicated baseband waveform sequence. For each frequency, or section, of the
step-chirp phase characteristic, a phase group consisting of N phase samples is obtained and the total
number of code phases is N2 , which is equal to the pulse-compression ratio. Note that the phase incre-
ments within the four phase groups are 00, 900, 1800, and 2700. However, the phases of the last group
are ambiguous (> 1800) and appear as -90° phase steps or as the conjugate of the F, group of phases,
which corresponds to the lower sideband of F.. The last group of phases appears, because of the ambi-
guity, to complete one 3600 counterclockwise rotation rather than the (N - 1) rotations of the end fre-
quency of the step-chirp waveform.

The Frank-code phases may be stated mathematically as follows. The phase of the i th code ele-
ment in the j th phase group, or baseband frequency, is

0 j = (27r1N) G - 1) Q - 1),'(1

2
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where the index i ranges from 1 to N for each of the values of j ranging from 1 to N. An example of a
brute force Frank-code pulse generation for N = 3 is shown in Fig. 2. The Frank-code phases are the
same as the negative of the steering phases of an N-point DFT, where the j th frequency coefficient is

Fj = a, exp[-j27r(i - 1) (j - 1)/N], (2)
1=1

where a, is the i th complex input time sample. This means that a considerable savings in hardware can
be achieved by using the efficiency of an FFT.

TXM T

I 2 3

a ( t I I Go I Gj I G2 I

0 10 1 0 I 0 1120 12401 0 1240 1120

T-T4 t -1

Fig. 2 - Simplified Frank-code generation

The matched-filter output for an N = 10 (100-element) Frank code is shown in Fig. 3. This
figure and the following figures showing the compressed pulse were obtained by sampling the input
baseband waveform once per code element or per reciprocal bandwidth unless stated otherwise. With a
discrete-time matched filter, the output signal is also a discrete-time sampled signal. However, for ease
of plotting and viewing the points were connected by straight lines. The four sidelobe peaks on each
half of the match point (peak response) are of equal magnitude. The first peak sidelobe, at sample
number 5 in Fig. 3, occurs as the last phase group having -36° phase increments indexes halfway into
the first phase group of zero phase vectors in the autocorrelation process. In general, at sample number
N/2 there are N/2 vectors adding to complete a half circle. The end phase group indexing into the first
phase group of 00 vectors approximates a circle, since the phases of the last phase group make only one
rotation as stated previously. The peak sidelobe amplitude may be approximated by the diameter D of
the circle from the relation

Perimeter = N = -rD
or

D= N/7r.
At the match point the amplitude is N2 , so that the peak-response to peak-sidelobe power ratio R is

R - N4 2- N 2 T, 2 = 2

For a 100-element Frank code, this ratio is approximately 30 dB, as shown in Fig. 3.

(3)

(4)

(5)

3
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Fig. 3 - Compressed pulse of 100-element Frank code

Had the phases of the polyphase-coded waveform been generated by, use of the phases of the
step-chirp phase characteristic sampled at one-fifth of the interval used for the Frank code, the
compressed code would appear as shown in Fig. 4. In this figure, five samples are equal in time to one
sample in Fig. 3. Note in Fig. 4 that the near-in sidelobes are approximately 13 dB and that the
envelope of the sidelobe peaks is approximately that of a sin x/x pulse. The 13-dB sidelobes also
appear for an oversampling of 2:1. These comments also apply to the other polyphase codes described
in this report. Also, note that the compressed pulsewidth in Fig. 4 has not decreased, since it is deter-
mined by the underlying bandwidth of the step-chirp waveform.
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Fig. 4 - Compressed pulse of oversampled (5:1) step-chirp
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Effects of Band-Limiting Frank-Coded Waveform Prior to Pulse Compression

A Frank-coded waveform is depicted in Fig. 5(a), where the GK's denote the phase groups
corresponding to the sampled phases of a step-chirp waveform as previously discussed. Each group
consists of N vectors beginning with a vector at a phase angle of 00. The phase increments within the
Kth group are

(6)AOK = K 360 0
N 

Thus GO consists of N vectors at 00, GI has vectors separated by 3600 /N, and so forth, until at the
center of the coded waveform the phase increments approach 1800 or become 1800, depending on
whether N is odd or even. For phase increments greater than 180° the phases are ambiguous, with the
result that the phasors of phase group GN-K are the conjugates of the phasors of phase group GK, so
that the vectors have the same increments but rotate in opposite directions. The result is that the
phase increments are small at the ends of the code and become progressively larger toward the center
of the code, where the increments approach 1800 from opposite directions.

WMt)
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4\ FRANK CODE

(a)

4J
IL
4

6N-2 GN.I G0 .NEW CODES

W \
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Fig. 5 - Effect of band limiting before pulse compression

If a receiver is designed so that it has an approximately rectangular bandwidth corresponding to
the 3-dB bandwidth of the received waveform, the received waveform becomes bandlimited and a
mismatch occurs with the compressor. This band limiting would normally occur prior to sampling in
the analog-to-digital (A/D) conversion process to prevent noise foldover and aliasing. The result of
any band limiting is to average (or smooth) the vectors constituting the coded waveform, and for the
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Frank code a weighting W(t) such as illustrated in Fig. 5(a) takes place due to the larger phase incre-
ments toward the middle of the code. This weighting causes an unfavorable mismatch with the
compressor, which results in a degradation of the sidelobes relative to the peak response.

The new symmetrical codes found by the authors have the common property that the phase
groups with the small phase increments are at the center of the code and the larger-increment groups
progress symmetrically toward the ends of the code. This is illustrated in Fig. 5(b), where a favorable
amplitude weighting resulting from band limiting prior to pulse compression is shown.

P1, P2, P3, and P4 Polyphase Codes

The new polyphase codes which tolerate band limiting are referred to as the P1, P2, and P4 codes.
The P1 code was derived from use of the previously described relationship between the Frank-code
phases and those of a sampled step-chirp waveform. The desired symmetry, with the dc or small incre-
mental phase group at the center of the code, can be achieved from a determination of the phases that
result from placing the hypothetical synchronous oscillator at the band center of the step-chirp
waveform. For an odd number of frequencies, the synchronous oscillator frequency corresponds to one
of the waveform frequencies and the resultant phases are the same as for the Frank code, except that
the phase groups are rearranged as indicated in Fig. 5(b). If there is an even number of frequencies,
the synchronous oscillator frequency placed at the band center does not correspond to one of the fre-
quencies in the step-chirp signal. The phase of the i th element of the j th group is given in degrees by

jj = - (180/N) [N- (2j -1)] [(j - 1) N + ( - 1)], (7)
where i and j are integers ranging from 1 to N.

The P2 code, which also has the desired features, is similar to the Butler-matrix steering phases
used in antennas to form orthogonal beams. The P2 code is valid for N even, and each group of the
code is symmetric about 00 phase. The usual Butler-matrix phase groups are not symmetric about 00
phase and result in higher sidelobes. For N even, the P1 code has the same phase increments, within
each phase group, as the P2 code, except that the starting phases are different. The i th element of the
j th group of the P2 code is given in degrees by

Oj j = (90/N) (N + 1 - 2) (N + 2- 2 j), (8)
where i and j are integers ranging from 1 to N as before. The requirement for N to be even in this
code stems from the desire for low autocorrelation sidelobes; an odd value for N results in high auto-
correlation sidelobes. This code has the frequency symmetry of the P1 code and also has the property
of being a palindromic code, which is defined as a code having symmetry about the center.

The P4 code is similar to the P1 code, except that the phase samples are those of a sampled chirp
waveform rather than a step-chirp waveform. In each case, the synchronous oscillator is placed at the
band center, with the result that the codes are symmetrical. The P3 code is also derived from a chirp
waveform and is the counterpart of the Frank code where the synchronous oscillator is put at the lowest
frequency to determine the phases. The P3 code, like the Frank code, is therefore intolerant of band
limiting.

The phases of a modified P4 code* are given by

0i = (45/p) (2i - 1)2- 45(2i - 1), 1 < i < p, (9)

and the phases of the P3 code are

tjE = (180/p) (i 1)2, 1 < i ( . (10)

This code varies slightly from the one given in [31. In effect, the first sample of the Nyquist sampling of a chirp signal has been
shifted by half a sample period to produce a palindromic code.

6
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The compressed pulse for a 0-doppler, 100-element P3 or P4 code is shown in Fig. 6. It is similar
to the Frank, P1, and P2 100-element codes, except that the peak sidelobes are approximately 4 dB
higher.

0-

0

M 0
- I
LiJ

'A

LuJ

LLJ

Li.

0

0
I'1 40 80 120 160 200

SRMPLE NUMBER

Fig. 6 - Compressed pulse of 100-element P3 or P4 code

DOPPLER PROPERTIES OF POLYPHASE CODES

Ambiguity Functions and Cyclic Losses

A partial ambiguity function for a 100-element Frank code is shown in Fig. 7, which shows the
amplitude in dB of a matched-filter output for given doppler shifts of the input. The doppler is normal-
ized to the signal bandwidth and the delay axis is normalized to the uncompressed pulse length. The
cut through this diagram at 0 doppler shows the output of a perfectly matched receiver. In this case,
the output pulse is the same as the autocorrelation function of the input waveform. A cut along any
other doppler axis shows the output of the receiver for an input waveform having a doppler which is
mismatched to the receiver by the stated amount. The vertical scale ranges from 0 dB to -60 dB, and
the -30 dB sidelobes for 0 doppler are evident. The normalized doppler shift of -0.05 shown in this
figure corresponds to a mach-50 target for an L-band radar having a signal bandwidth of 2 MHz. The
first doppler cut shown in the literature [4] is taken at this normalized doppler, and the resultant high-
peak sidelobes shown in Fig. 8 have perhaps discouraged usage of the Frank code. The region shown
in Fig. 7 between 0 and -0.005 doppler (mach-5), with a delay interval of ± 0.3, is of interest, and it is
shown on an expanded scale in Fig. 9. In this region, the doppler response is good in terms of the
sidelobe levels. (The blank spot on the plot was caused by a computer plotting glitch.) The
corresponding ambiguity function for the 100-element P4 code is shown in Fig. 10, where the peak
response is seen to have the same cyclic variation as the Frank code. The differences between these
ambiguity functions will be discussed in later sections, and it will be shown that amplitude weighting or
band limiting will reduce the image lobes at the ends of the compressed pulse. At a doppler shift of
-0.005, or more generally ± 1/( 2 p), the total phase shift across the uncompressed pulse is ir and the
peak response drops approximately 4 dB. At this doppler, there is a range-doppler coupling of half a

7
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Fig. 7 - Partial ambiguity function for 100-element Frank code
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Fig. 8 - Compressed pulse of 100-element Frank code,
doppler = -0.05
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KRETSCHMER AND LEWIS

range cell, with the result that the signal splits between two range cells. This is illustrated in Fig. 11 for
the Frank code. At a normalized doppler shift of -0.01, or in general ± I/p, there is a range-doppler
coupling of one range cell resulting from a total phase shift of 21r radians across the uncompressed
pulse, and the main peak response is restored to nearly full amplitude as shown in Figs. 7 and 10. This
effect is cyclic and a loss of approximately 4 dB is encountered when the total phase shift due to
doppler is an odd multiple of 1800.

z

Ln-

80 100 1I
SRMPLE NUMBER

Fig. 11 - Compressed pulse of 100-element Frank code,
doppler = -0.005

The loss may also be shown if we consider the misalignment of the vectors at the pulse compres-
sor output due to a doppler shift which results in phase shifts across the uncompressed pulse duration
T. The loss occurs because the matched filter does not desteer the phases due to doppler. For a
doppler frequency fd, the phase increments from subpulse to subpulse are

AO = 27rfdT/p,

and the resultant unit-normalized signal is

S= IP X ejnAO
P n=0

1 sin p (AO/2)
p sin (AO/2) -

(11)

(12)

For AO = 0, the maximum normalized output of one is obtained. When the total phase shift
across the uncompressed pulse is ir, one finds that

S = 2/1r. (13)

This is equivalent to an approximately 4 dB loss and corresponds to a range-doppler coupling of half a
range cell. As mentioned previously, for a range-doppler coupling of one range cell, the total phase
shift across the uncompressed pulse is 27r and the peak amplitude is nearly restored. The trough fol-
lowing each peak is down approximately 4 dB from the peak.

10
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It should be noted that this 4-dB loss also occurs in a pseudorandom binary shift register code
when the doppler phase shift across the uncompressed pulse is 7r. However, the response is not cyclic
and monotonically decreases as the doppler frequency is increased. For this reason, a doppler filter
bank is usually instrumented to cover the doppler band of interest.

The cyclic loss indicated for the polyphase code is a consequence of deriving the phases of the
polyphase code from those of a step-chirp or chirp waveform sampled at the Nyquist rate. Had the
phases been sampled faster, the cyclic loss would decrease and the peak sidelobes of the compressed
pulse would increase to approximately 13 dB as previously described. This is a general property of the
polyphase codes described in this report.

FFT Implementations and Doppler Compensation

Another property of the polyphase codes described in this report is that they can be implemented
with a modified FFT phase structure. An example is shown in Fig. 12 for a P1 code. Each code can be
generated or compressed with the same standard FFT phase filter shown in Fig. 13. The phase shifts
used before and after the FFT phase filter depend on the particular code.

One way to reduce the 4-dB cyclic variation of the polyphase codes is to provide an additional out-
put port for the compressed pulse which provides an approximate phase compensation of 1r. This could
be achieved by the use of additional phase shifters and delay lines in the Fj output ports of the FFT
phase filter shown in Fig. 12.

EXPANSION

EXPANDED
PULSE

COMPRESSION

COMPRESSED
PULSE

Fig. 12 - PI code generation and expansion using FFT
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Fig. 13 - FFT phase filter

Comparison of Doppler Responses and Effects of Weighting

In this section we compare the doppler responses of the various 100-element codes by examining
the doppler variation of the peak compressed signal, the peak sidelobes or secondary maxima, and the
image signal. The image signal is due to the polyphase codes being derived from a Nyquist rate sam-
pling of the step-chirp or linear-chirp phase characteristics. These are illustrated in Fig. 14 for a Frank-
coded receive waveform having a normalized doppler frequency of -0.05.

The doppler behavior of the Frank, P1, and P2 codes is the same and is shown in Fig. 15, where
the cyclic variation of the peak amplitude is evident. Also, there is a cyclic behavior of the secondary
maxima and the envelope of the peak signal response every 0.1 in normalized doppler. This doppler
corresponds to a range doppler coupling of ten range cells for the 100-element code, which is the
equivalent duration of one phase or frequency group. These secondary maxima are nearly the same as
those which occur for an analog step-chirp compressed pulse having the same doppler-shifted input
waveform [4]. Figure 15, except for the rapid cyclic behavior, is similar to Fig. 8.28 in [4]; however,
the peak response in Fig. 15 does not fall off as fast with doppler. This is attributed to our sampling
the received Frank code once per code element. Also, our secondary maxima and image signal include
the 0-doppler values.

The P3 and P4 codes also have the same doppler behavior; this is shown in Fig. 16, where it is
evident that the secondary-maximum sidelobes are generally much less than those for the Frank, PI,
and P2 codes shown in Fig. 15. At zero doppler, the P3 and P4 codes have sidelobes that are approxi-
mately 4 dB higher than those of the Frank, PI, and P2 codes. The compressed pulse for the P3 or P4
code having a doppler shift of -0.05 is shown in Fig. 17; it should be compared with the Frank, PI,
and P2 compressed pulse in Fig. 14.

12
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Fig. 14 - Compressed pulse of 100-element Frank code,
doppler = -0.05
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The effects of weighting, using a cosine on a pedestal of 0.2, are depicted in Fig. 18 for the Frank,
P1, and P2 codes (Case 1) and in Fig. 19 for the P3 and P4 codes (Case 2). Figures 20 and 21 show
the compressed pulses for the weighted Case 1 and Case 2 codes. Parts (a) and (b) of these figures
show normalized doppler frequencies of 0.0 and -0.05 respectively. From these figures and a compari-
son of Figs. 20(a), 20(b), 21(a), and 21(b) with the corresponding unweighted responses shown in
Figs. 3, 14, 6, and 17, respectively, several observations may be made. First, weighting reduces the
percentage cyclic variation of the compressed pulse peak with doppler. Second, weighting increases the
ratios of the peak signal to the image lobe, the mean-squared sidelobes, and, to a lesser extent, the
secondary maxima. Another aspect of weighting is that it can be shown to reduce the fluctuation of the
compressed pulsewidth as the doppler varies.

Band-Limiting Effects on Doppler Responses

In this section we describe the effects of band limiting prior to pulse compression. We previously
described how band limiting acts as an adverse amplitude weighting on the Frank and P3 codes but
improves the P1, P2, and P4 symmetrical codes.

The behavior of the polyphase codes was compared in the presence of band limiting. We simu-
lated the band-limiting effect by oversampling the received coded waveform by a factor of five to
approximate the analog received waveform and then filtering this waveform with a five-sample sliding-
window average. The inputs to the pulse compressor were then taken, using every fifth sample. The
particular set of inputs is therefore dependent on the starting time. The outputs of the compression
filter were computed for the five sets of input data, corresponding to different sampling times within
the subpulse width of the coded element. The data were averaged and are shown in Figs. 22, 23, and
24 for the Frank, P2, and P4 codes, respectively, for normalized doppler frequencies of 0.0 and -0.05.
The results for the P3 and P1 codes were similar to those for the Frank and P2 codes, respectively, and
are not shown. In Figs. 22(a), 23(a), and 24(a) showing the zero doppler cases, the peak responses are
each reduced approximately 2.4 dB. However, for the Frank code the secondary maxima and the image
sidelobes are not reduced. Thus, it is seen that, in the presence of band limiting, the Frank-code
compressed-pulse degrades. In Figs. 23(a) and 24(a) we see that the secondary maxima and image
sidelobes are approximately 5 dB lower, with the result that the peak signal to sidelobe ratio is
improved. In Figs. 22(b), 23(b), and 24(b), we show the same codes having a normalized doppler shift
of -0.05. Comparing Fig. 22(b) with Fig. 14 for the Frank code, we see that the sidelobe levels are
approximately the same although the peak signal is reduced by nearly 4 dB. This again shows that the
Frank code is degraded in the presence of band limiting. For the P2 code in Fig. 23(b), the ratio of the
peak signal to secondary maxima is the same as it is for no band limiting (this ratio is the same as that
for the Frank code shown in Fig. 14); however, the ratio of the peak signal to the image lobe has
improved by approximately 3 dB. In Fig. 24(b), showing the band-limited P4 coded waveform having a
doppler shift of -0.05, the ratio of the peak signal to the image lobe is also improved by approximately
3 dB compared to the case shown in Fig. 17 for no band limiting.

From these results and prior comments, it is seen that, for zero and nonzero doppler shifts, the
Frank and P3 codes degrade in the presence of band limiting. On the other hand, the symmetrical P1,
P2, and P4 codes improve mainly in terms of the ratios of the peak signal to the image lobe and the
mean-squared sidelobes. The peak signal to secondary maxima ratio is improved by several decibels for
zero doppler, and for higher dopplers the ratio is approximately the same. The large secondary maxima
of the Frank, P1, and P2 codes which occur at the higher doppler frequencies-are not present with the
P3 or P4 codes.
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SUMMARY

The basic properties of the Frank and the P1, P2, P3, and P4 polyphase codes were presented. It
was shown how these codes may be obtained from considering the sampled phases of the step-chirp and
chirp baseband waveforms. These codes can be digitally compressed by using FFT's directly or by a
fast convolution technique.

The doppler properties of these waveforms were investigated in detail. It was shown that these
waveforms have a cyclic loss of approximately 4 dB, which is attributed to the p discrete phases that are
used. As the number of phase samples increases, this loss diminishes and the sidelobe levels approach
the 13-dB level of the chirp waveform. It was shown that this loss occurs when the total phase shift
across the uncompressed pulse is an odd multiple of Xr radians. This loss can therefore be reduced by
providing a phase-compensated channel which has approximately a 7r phase shift across the
uncompressed pulse; then, for example, the channel having the largest signal is selected. Also, it was
shown that weighting reduced the cyclic variation of the peak response and stated that it reduced the
variation of the pulsewidth with doppler.

The doppler responses of the P3 and P4 codes were shown to have much lower secondary maxima
than the Frank, P1, and P2 codes and to have comparable image lobes. However, amplitude weighting
was shown to primarily increase the ratio of the peak signal to the image lobe, the ratio of the peak sig-
nal to the mean-squared sidelobes, and, to a smaller extent, the ratio of the peak signal to the secon-
dary maxima.

The effects of band limiting were investigated for zero and nonzero doppler-shifted waveforms,
and for the symmetrical P1, P2, and P4 codes the results were found to be similar to those for ampli-
tude weighting. For these codes, it was found that the ratios of the peak signal to the image lobe, the
mean-squared sidelobes and, to a lesser extent, the secondary maxima are irhproved. However, for the
unsymmetrical Frank and P3 codes these ratios are degraded.

The P4 code, in addition to being tolerant of band limiting, was shown to provide better doppler
tolerance than the other codes in the presence of relatively large doppler shifts. However, for small
normalized doppler shifts of less than approximately 1/( 2 p), the P1 or P2 codes have lower peak
sidelobes. The preferred code therefore depends on the expected doppler shifts.
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